Technical Report Quality of Service Routing in MPLS Networks using Decentralized Learning
نویسندگان
چکیده
This paper presents several decentralized learning algorithms for on-line intra-domain routing of bandwidth guaranteed paths in MPLS networks when there is no a-priori knowledge of traffic demand. The presented routing algorithms use only their locally observed events and update their routing policy using learning schemes. The employed learning algorithms are either learning automata or the multi-armed bandit algorithms. We investigate the asymptotic behavior of the proposed routing algorithms and prove the convergence of one of them to the user equilibrium. Discrete event simulation results show the merit of these algorithms in terms of increasing the network admissibility compared with shortest path routing. We investigate the performance degradation due to decentralized routing as opposed to centralized optimal routing policies in practical scenarios. The system optimal and the Nash bargaining solutions are two centralized benchmarks used in this study. We provide nonlinear programming formulations of these problems along with a distributed recursive approach to compute the solutions. An on-line partially-decentralized control architecture is also proposed to achieve the system optimal and the Nash bargaining solution performances. The results of this study indicate that decentralized learning techniques provide efficient, stable and scalable approaches for routing the bandwidth
منابع مشابه
Using a Fuzzy Rule-based Algorithm to Improve Routing in MPLS Networks
Today, the use of wireless and intelligent networks are widely used in many fields such as information technology and networking. There are several types of these networks that MPLS networks are one of these types. However, in MPLS networks there are issues and problems in the design and implementation discussion, for example security, throughput, losses, power consumption and so on. Basically,...
متن کاملRLTE: Reinforcement Learning for Traffic-Engineering
Quality of service (QoS) is gaining more and more importance in today’s networks. We present a fully decentralized and selforganizing approach for QoS routing and Traffic Engineering in connection oriented networks, e.g. MPLS networks. Based on reinforcement learning the algorithm learns the optimal routing policy for incoming connection requests while minimizing the blocking probability. In co...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملImprovement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm
Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...
متن کاملImprovement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm
Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...
متن کامل